Quick Start
Get up and running with Sentrial in under 5 minutes.
Prerequisites
- Python 3.8+ or Node.js 16+
- A Sentrial account (sign up at sentrial.ai)
- An API key from your project settings
1. Install the SDK
Python
pip install sentrial
# With LangChain integration
pip install sentrial[langchain]TypeScript / Node.js
npm install @sentrial/sdk
# or
pnpm add @sentrial/sdk
# or
yarn add @sentrial/sdk2. Initialize the Client
Python
from sentrial import SentrialClient
# Initialize client with your API key
client = SentrialClient(
api_key="your-api-key-here",
project_id="your-project-id"
)
# Create a session to track your agent
session_id = client.create_session(
name="Customer Support Agent",
metadata={"user_id": "user_123"}
)TypeScript
import { SentrialClient } from '@sentrial/sdk';
// Initialize client with your API key
const client = new SentrialClient({
apiKey: 'your-api-key-here',
projectId: 'your-project-id'
});
// Create a session to track your agent
const sessionId = await client.createSession({
name: 'Customer Support Agent',
metadata: { userId: 'user_123' }
});3. Track Your Agent
Choose your integration method based on your framework:
LangChain (Recommended)
The easiest way to get started. Just add our callback handler:
from sentrial import SentrialClient, SentrialCallbackHandler
from langchain.agents import AgentExecutor, create_react_agent
# Initialize Sentrial
client = SentrialClient(api_key="...", project_id="...")
session_id = client.create_session(name="My Agent")
# Create callback handler
handler = SentrialCallbackHandler(client, session_id)
# Use with your agent - that's it!
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
callbacks=[handler], # 👈 Automatic tracking
verbose=True
)
# Run your agent normally
result = agent_executor.invoke({
"input": "Help user with password reset"
})Manual Tracking
For custom agents, manually track events:
# Track agent reasoning
client.track_decision(
session_id=session_id,
reasoning="User needs password reset assistance",
alternatives=["Direct reset", "Security questions"],
confidence=0.85
)
# Track tool calls
client.track_tool_call(
session_id=session_id,
tool_name="search_kb",
tool_input={"query": "password reset"},
tool_output={"articles": ["KB-001"]},
reasoning="Searching knowledge base"
)
# Track LLM calls
client.track_llm_call(
session_id=session_id,
prompt="Generate password reset email...",
response="Dear user, here's how to reset...",
model="gpt-4",
tokens_used=150
)4. View in Dashboard
Once your agent runs, view the execution in the Sentrial dashboard:
- Go to your dashboard
- Select your project
- Click on the session you just created
- Explore the timeline, tool calls, and reasoning steps
